
Sofia Papadopoulou 1

Recreating Bomberman

Features, steps and challenges

Sofia Papadopoulou
 Computer Games Engineering MSc,

Computer Sciences, Newcastle University

 Newcastle Upon Tyne, UK

 s.papadopoulou2@newcastle.ac.uk

ABSTRACT

Game developers can be considered as virtual architects. They

should visualise the whole game they are requested to build,

predefine every game aspect needed and develop it one by one.

They must predict and prevent possible mistakes that may cost the

game’s success and satisfy the users’ expectations. Developing a

game from the beginning is not easy for any developer. However,

experience comes with practice and thus developers discover the

most effective method to achieve a satisfying result after several

games. This project’s goal is to demonstrate an indicative way of

‘re-creating Bomberman’, or simply build a ‘Bomberman-type

game’. Every step taken to build this game is included and

explained, in the order that the programmer followed.

KEYWORDS

Bomberman game, Features, Implementation, Challenges, Unity

1. Introduction

In the last decade, gaming has become a trend and pretty popular

on a quite extended age group of 10 to 65 years old1. More and

more people even decide to follow a gaming career path, by turning

into streamers and having an income by playing video games. Other

professionals from a totally different scientific background, have

started showing interest in gamification, to make their work more

pleasant. Many are those who have discovered the term ‘serious

games’ and attempt to include it in their jobs. Thus, the game

industry has gained a huge portion of consumers and the market has

continuous needs for game developers. As a result, an increasing

number of developers start their careers after graduation and are

called to face challenges the same as all game programmers. In

particular, they should produce good quality applications, in the

shortest possible time and with the minimum cost and resources.

Therefore, sometimes game engines come in handy, especially for

developers without much of experience. Unity and Unreal Engine

are always the top two on lists about the most popular2 or the best

game engines3.

1 https://techjury.net/blog/video-game-demographics/
2 https://techblogcorner.com/2020/02/06/most-popular-game-engines-for-game-

development/

At the beginning of a game developer’s career, programmers are

usually asked to create a game like an already existing one, so that

they have an image of what they are trying to create. Other times,

they may be asked to build a separate feature from zero, with more

details provided on the upcoming project. Either way, graduate

game developers need some time to obtain the experience needed

to be able to break any project in smaller tasks, sort them out in a

convenient-to-build way and find the optimal way to implement

their assigned tasks. The current dissertation describes the steps

taken by a game developer to build a game like Bomberman in

Unity. Decisions made in the process will be justified and

explained, to provide an insight into the developer’s thoughts.

Someone may ask ‘Why Bomberman?’. The answer to this

question is that Bomberman is one of the longest-running series in

gaming, offering a great number of gameplay features and

variations to implement and experiment on. It was first released in

1983 by Hudson Soft, a Japanese video game company. Its series

consists of more than 80 different games, on various platforms.

Bomberman is also known as Dynablaster (in Europe) and Atomic

Punk (in North America). On the gameplay side, it is a strategy,

maze-looking game, that usually has two modes, a normal and a

battle one. Each level consists of static unbreakable (walls) and

destructible objects (bricks, barrels etc.). In normal mode, the

player’s main goal is to kill all the enemies (monsters) on the map

by dropping bombs that detonate after a few seconds. When all

enemies are dead, the player must discover the exit, which is

usually hidden behind one of the breakable objects. In battle mode,

the player goes up against other players, that have to be killed, since

the last standing player is the winner. The players can be destroyed

either by bombs (even their own) or by the touch of the monsters.

A feature that makes the game more interesting and attractive are

the power-ups. They appear after breaking destructible objects, and

they give some ‘powers’ to the player. For instance, they can extend

the bombs’ blast, unlock more bombs for the player to use at the

same time or increase the player’s movement speed. In the current

project, the power-ups selected to be implemented are seven: the

3 https://gamedevacademy.org/best-game-engines/

mailto:s.papadopoulou2@newcastle.ac.uk
https://techjury.net/blog/video-game-demographics/
https://techblogcorner.com/2020/02/06/most-popular-game-engines-for-game-development/
https://techblogcorner.com/2020/02/06/most-popular-game-engines-for-game-development/
https://gamedevacademy.org/best-game-engines/

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 2

‘Extra Bombs’ that unlocks one more bomb to use, the ‘Extra Life’

which gives one more life to the player, the ‘Fire Range’ that

extends the bombs’ blast, the ‘Ghost Bomb’ which makes the

bombs penetrate breakable objects, the ‘Throw Bomb’ that allows

the player to pick up and throw away a bomb, the ‘Speed up’ and

the ‘X-Ray Vision’ which allows the player to locate power-ups

that are still hidden.

The structure of the rest of the document is as follows:

▪ Section 2 examines and presents related work on game

development and Bomberman

▪ Section 3 describes extensively the implementation process

▪ Section 4 presents the results of this project

▪ Section 5 contains the conclusions and future work.

2. Background and Related Work

To the best of my knowledge, existing literature on frameworks

regarding the design and development of video games is limited.

There are books with guidelines on game design and several

publications on game design techniques based on various elements,

such as the theory of visual attention or interactive gameplays.

However, game development perspective seems to be less studied.

Rogers Scott [1] analyses the proper techniques to use in order to

create a successful and addictive game. He shares his experience

and suggests to always consider how users think and what they

expect from a game. According to him, if a game is too hard to play

or to understand, users will get tired or bored and the game will be

a failure quite soon. He proposes strategies and tricks to make a

game unique and engaging, for instance, by exploiting game

controllers’ actuators and giving rewards. He also includes

suggestions on how to communicate properly with the user through

the HUD, and how to organise and build a beat chart, to create gap-

free gameplay. Multi-player games cover a whole chapter where

Rogers [1] shares tips for implementation to keep the users

satisfied. The significance of audio in games is described

extensively and various recommended exercises for gamers and

developers’ wellbeing are also included in this book.

Rafael Prieto de Lope et al. [2] present and analyse a new

methodology for building educational games that are based on

interactive screenplays. They first assess software development

methodologies such as the 5M (Method, Milieu, Manpower,

Machine, Materials), the Padilla-Zea models, the Westera levels,

the SUM and the Ontological methodology. Then, they make a list

of limitations for each one of the assessed methodologies and they

finally suggest a new one that consists of three preliminary and six

main phases (Figure 1: Methodology proposed in [2]). Finally, they

describe an example of their methodology application on a video

game for comprehensive reading.

Figure 1: Methodology proposed in [2]

David Milam [3] emphasises the importance of interactivity with

the player and how the player's perception and attention are

associated with the game interactions. He investigates game

designs, their implication with the user’s experience and attempts

to develop a user’s perception-based guidelines on game tasks

complexity. He summarises game design models and underlines the

significance of game prototyping and playtesting during game

design and development. After applying his proposed perception-

based framework in six commercial games, he suggests three

guidelines to control the cognitive load.

Regarding existing literature, the majority of research conducted is

related to game design, instead of development. Besides the

development-based methodologies are robust and as a result, quite

generic. When game developers start building a game, apart from

the order of game elements’ implementation, they have to make a

list of all the game objects needed, their behaviour and how they

will engage the users in this particular game. It seems though that

there is not enough research following a game developer’s practical

approach in implementing a game. Therefore, this dissertation aims

to follow a game developer’s path throughout a game’s

development. The implemented game is a Bomberman-type game.

The Bomberman game appears in several research papers, that are

focused on artificial intelligence. For instance, Joseph Groot

Kormelink et al. [4] examine and compare reinforcement learning

methods as exploration systems for the best performance in

Bomberman. They investigate the performance of two explorations

strategies combined with connectionist Q-learning to learn how to

play the game. The results presented demonstrate that methods

combining explorations and exploitation actions achieve higher

performance than the ones that choose only one of them.

Another research related to Bomberman is [6], where the author

provides a platform called Bomberman as an Artificial Intelligence

Platform (BAIP), to facilitate the implementation and evaluation of

artificial intelligence(AI) methods. Furthermore, he conducts

experiments developing two types of AI; primitive behaviour

baseline agent and search-based agent and evaluates reinforcement

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 3

learning methods. Moreover in [7] and [8], Pommerman, a multi-

agent environment is analysed and explained thoroughly, while the

writers attempt to create various agents and evaluate their

performance on this Bomberman-based environment.

In conclusion, existing literature work lacks in the implementation

process of a Bomberman-type game from a game programmer’s

perspective. Game development in practice requires a good

understanding of the game’s concept and the ability to categorise

implementation tasks and needed features. Besides, the developer

needs to apply best practices and to be familiar with users’

expectations.

3. Design and Implementation

In the following sections, the reader can follow a game developer’s

trail of thoughts and actions while building a Bomberman-type

game.

3.1. Gameplay Features

The majority of attributes needed for a game are usually found in

the specifications given. For instance, a possible description given

to a developer who is called to create this game could be

“A 2D Bomberman-type game, with both single and multi-player

mode. The maximum players will be four, but if less, players will be

able to fill in the empty positions with bots. The camera will be

tilted and following the player on single-player mode, but it will be

top-view on multi-player. In single-player mode, the player will

select between the Adventure and the Party mode. Each level map

will be a 17 by 13 grid, made with blocks of 16 by 16 pixels.”.

After decoding the description above, the game features needed for

this game are the following:

▪ 2D graphics and camera handling to create a 2.5D projection

for single-player mode

▪ AI for bots (human playing behaviour) and monsters (similar

behaviour to Bomberman’s enemies)

▪ animation on 2D sprites for player, bot and monster

movement, or bomb’s detonation (similar to Bomberman

game)

▪ User Interface (UI) for game mode selection, character

selection, bots’ addition and players’ lives

▪ and audio for making the game more vivid and engaging.

During the implementation, the thread unravels and each developer

may face more specifications or new challenges that were not

anticipated. In this project, we attempt to justify the decisions made

from the developer according to the requirements, on every step of

the implementation.

3.2. Implementation Steps

Game programmers are usually asked to design and develop a

requested game in the most efficient way regarding the game

performance and the resources utilised. Sometimes superiors assign

4 https://docs.unity3d.com/ScriptReference/Tilemaps.Tilemap.html

specific tasks, while other times they allow developers to take

initiatives. In the latter case, a programmer needs to distinguish and

organise the steps that need to be followed until the game is

finished. In the following subsections, these steps have been sorted

by their ideal implementation time. Most of them were created in

the described timeline, but some that were formed as new ideas

were added later on. However, we have chosen to present them this

way to follow the developer’ actions trail.

3.2.1. Game levels and maps design. At first, we needed a 2D

environment to build our game on and a sprite sheet from a designer

to use for this purpose. According to the description given, we had

to create a 17 by 13 grid. Unity as a game engine provides a tilemap

component 4 , that comes with a helpful design tool called Tile

Palette5, giving the user the ability to add as many sprites as they

need on it and to draw on the grid by simply dragging their mouse.

Figure 2 demonstrates the palette used in this project. The sprites

included are either for ground tiles, breakable or static objects.

Figure 2: Tile Palette used for level maps design

In our case, we preferred to design every level map on three

separate tilemaps (Figure 3). The first one, called ‘background’,

contains the background of the level that is basically the ground of

the stage. The second one, called ‘collision’, includes the

indestructible objects that would either stop the player from going

outside of the arena or block their way. To achieve this purpose, the

‘collision’ object also needed a 2D collider - combined with a

composite collider 2D to form a new compact geometry of colliders

- and a static 2D rigid body. The last tilemap is the one containing

the destructible elements whose purpose is to delay the player from

roaming freely from the one side of the map to the other. This one

is called ‘bricks’ and a simple 2D collider was added to it. Creating

three different layers is beneficial especially when looking for clear

5 https://docs.unity3d.com/Manual/Tilemap-Palette.html

https://docs.unity3d.com/ScriptReference/Tilemaps.Tilemap.html
https://docs.unity3d.com/Manual/Tilemap-Palette.html

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 4

paths or checking if a player’s next step is a destructible object that

they should break using a bomb.

Figure 3: Tilemaps 'background', 'collision', 'bricks' and the

complete level 1

By adding a tilemap, a grid component6 is automatically generated

as a parent game object on it. A grid component accepts variables

such as a 3D vector for Cell Size, another 3D vector for Cell Gap,

an enum for Cell Layout with options ‘Rectangle’, ‘Hexagon’,

‘Isometric’ and ‘Isometric Z as Y’ and another enum for Cell

Swizzle with various options of swizzling between the axises X, Y

and Z. In our case, we simply adjusted the Cell Size vector on the

size of our tiles, to eliminate space around our sprite tiles.

3.2.2. Game objects and their behaviour. Having the 2D

sprites prepared from the designer, we are able to create our game

objects. First, we need to consider what we want from the object

we are planning to add in our game. In particular, we have to answer

the following questions in our mind:

- Are we going to need more than one of these objects? Should we

create an empty game object that contains them first?

- Do we need a sprite on this object? Or should we add it as a child

object?

- Do we need this object to interact with other objects around it?

Does it need a collider? What type of collider does it need?

- Do we want this object to be affected by colliding with other

objects or is it going to have forces applied to it? Do we need a

rigidbody added?

- Will this object be animated? Should we add an animator to it?

Should we add an animator to its sprite?

- Are there any other objects that need to be attached to it?

- Should this object be attached to another object?

- Will this object have a behaviour? Will it be controlled by the

user? Do we need to add a script on it?

When we have answered these questions, we are finally ready to

add the game object in the Hierarchy window of Unity.

6 https://docs.unity3d.com/ScriptReference/Grid.html

3.2.2.1 The player object. According to our game

specifications, we know that the player objects should be four, i.e.

the maximum number of players requested. Thus, we need an

empty game object ‘Players’ to include all the player entities. Our

players need a sprite to be visible in our game, a collider and a

rigidbody since they will interact with surrounding objects. They

will be animated and controlled by users so they need some scripts.

We have also mentioned that in single-player the camera will be

attached on the player, and the player – together with other objects

- will be rotated towards the camera. However, we need to keep in

mind that our game is still a 2D, similar to the 2D colliders used,

which means that our colliders are not supposed to be rotated

creating the third dimension. As a result, when single-player

adventure mode is activated the sprite renderer component should

be on a child object, which will be rotated, while the collider will

remain in the original player object, and the camera will be attached

temporarily on the tilted sprite child object.

Regarding the Player script that will be added on every player

object, the main behaviour is the player’s movement and bombs

dropping from input controls. Particularly, the user can move the

player either by the left joystick of the controller or through the D-

pad. Regarding the dropping-bombs functionality, the bomb object

has to be created first, but it is decided that it will be triggered by

the ‘X’ button on PS4 controllers, or ‘A’ on Nintendo Switch and

Xbox controller since these buttons are the most commonly used

on these controllers and therefore the most convenient for the user.

Another functionality that will be needed when the power-ups get

created, is the bomb picking up when the ‘throw bombs’ power-up

is enabled, because the user will pick up the planted bomb, by

pressing ‘□’ on PS4 controller or ‘X’ on Nintendo Switch and Xbox

controller.

Figure 4: Player Controls on every controller

The Player script should also include functions to enable/disable

the power-ups collected. An indicative list of Player script’s

functions, omitting the Start() and Update() functions, is:

private void UnlockTheFirstBomb();

public Transform SelectAnUnusedBomb(Vector3 direction);
private void ActivateBomb(Transform bomb, Vector3 direction);

public void Die();

private IEnumerator Revive();

public void ReturnToInitialPosition();

public void Reset();

https://docs.unity3d.com/ScriptReference/Grid.html

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 5

private void InputHandling();

private void MenusInputHandling();

private Vector2 GetDirectionFromPlayerSprite();

private void SetHoldingBombSprite();

public void AssignInput(Rewired.Player p);

public void AddLives(int extraLives);

public void ActivateKicking(float kickAbilityDuration);

private IEnumerator DeactivateKicking(float waitingTime);

public void SpeedUp(float speedUpDuration);

private void SpeedDown();

private IEnumerator SpeedDownAfter(float waitingTime);

public void ActivateGhostBombs(float ghostModeDuration);

private void DeactivateGhostMode();

private IEnumerator DeactivateGhostModeAfter(float

waitingTime);

public void ActivateXRay(float xRayVisionDuration);

private IEnumerator DeactivateXRayAfter(float waitingTime);

public void UnlockExtraBomb();

public void IncreaseBombsFireRange();

private void CancelAllPowerUps();

In addition to scripts, many different animations are needed for the

player:

- a walking animation, that consists of eight animations – four for

the male sprite moving up, down, left and right and four similar

ones for the female sprite,

- a death animation, that represents a burnt figure that is just

blinking,

- an empty ‘Idle’ animation which has as a primary purpose to

maintain player’s pose as is when no movement takes place, and

- a holding-bomb animation that, similarly with the walking

animation, consists of four animations for the male sprite and four

for the female sprite.

The animation controller of the player object evolved into the

structure shown in Figure 5: Player's Animator. In general, we

wanted the transitions to be sharp and immediate, so we did not

need to use a blend tree.

Every transition on movement animations has the following

parameters in its conditions: ‘HorizontalAxis’ or ‘VerticalAxis’

depending on the direction, the ‘IsHurt’ variable that needs to be

false, otherwise, it transits to the death animation, the ‘IsFemale’

variable that distinguishes animations for the female sprite, from

the ones with the male sprite, and the ‘IsHoldingBomb’ variable

that when is true, leads to the holding-bomb animation. The

parameter ‘IsRevived’ is triggered at the end of a coroutine a few

seconds after a player has lost a life, re-colouring the player’s sprite.

Figure 5: Player's Animator

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 6

Figure 6: Male and Female Animation Sprites

Furthermore, some power-ups create the necessity of some extra

children objects of the player. For instance, a bomb detector object

which has a circle collider that extends beyond the player is useful

for the ‘throw bomb’ power-up, offering an insight of the

surroundings and suspending the bomb when a player with this

power-up is about to pick it up. Another interesting and helpful

addition is a sprite mask as a child of the player, which gets enabled

when the ‘X-ray Vision’ power-up is acquired. This mask along

with the power-up object’s design - that will be evaluated in the

following paragraphs - allows the user to see ‘behind destructible

objects’. The sprite mask has a custom range for rendering layers

therefore it filters objects that are above bricks and walls.

3.2.2.2 The bomb object. Every player owns four bombs that

are assigned to them. Having bombs per player is beneficial to

easily apply modifications on them every time that the player picks

up a power-up like ‘extra bomb’, ‘ghost bomb’ or ‘detonation range

increment’. If we used shared bombs for all the players, we would

need to apply these alterations according to players ‘condition’ on

each bomb every time they were about to plant one and revert them

after the explosion.

Bombs are supposed to detonate after a small time-period after

being planted, so first, we needed a way to indicate on the users that

there is an evolving countdown. An animated fuse that was placed

as a child of the bomb and was gradually shortened until it was

hidden in the bomb itself, fulfilled the aforementioned purpose.

Every time a bomb is placed, it gets activated as an object. A

countdown variable gets set to be equal to the fuse’s animation

length and as the frames pass it gets reduced until it reaches zero.

When it does, it triggers the explosion.

Regarding the explosion, each bomb has its own explosion parts,

consisting of the rounded edges and the extensions (as shown in

Figure 7) - used to extend the detonation range. Each one of the

parts has its own animation too to create the ‘fade out’ effect

(Figure 8).

Figure 7: Bomb's game object

Figure 8: Bomb explosion animation

The appearance of the extensions is related to the bomb’s level

variable. They only appear if the bomb’s level is greater than one.

The extensions sprites’ Draw Mode in Unity is set to Tiled because

we need them to appear repeatedly in proportion to bomb level. For

instance, the sprite’s size will be calculated as:

new Vector2(_gridSize, _gridSize * (explodedTiles - 1))

with explodedTiles variable to be lower than or equal to the bomb

level. The case of non-equality is faced when a bomb is blocked by

an indestructible or destructible object. In the former situation, the

bomb detonation stops right before the indestructible object, while

in the latter, it stops right on the destructible object and destroys it.

There is an exception to the last case. When the ‘ghost bomb’

power-up is enabled, then the detonation can go through the

destructible objects, to its full range and destroy anything behind

them, thus a boolean variable ‘IsGhostBomb’ was added.

A primary behaviour of any bomb is to trigger any other bombs in

range, so we included a function that practically sets the

explosion’s countdown to zero immediately, without waiting for

the fuse’s animation. To make it look realistic though, we had to

disable the fuse’s animation and hide the fuse at the same time.

Another functionality needed for the power-ups is the search for a

good landing spot when a bomb is thrown. In this case, before the

bomb starts moving over the objects, we need to check all the tiles

in the wanted direction for ground tiles. After some experiments,

the minimum realistic distance for the throwing has proven to be

three tiles.

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 7

An indicative list of Bomb’s functions is:
private void Awake();

private void Update();

private void Explode();

private IEnumerator ExplosionFadeOut();

private void HideExplosion();

private void HideExplosionChildren(Transform explosionPart);

public void SetCountdownTo(float newCountdown);

public void ThrowBomb(Vector3 direction, float gridSize);

private void StartTweening(Vector3 from, Vector3 to);

public void ResetLocally();

public void Reset();

public void FollowPlayer(int playersIndex);

public void UnFollowPlayer();

private void OnTriggerExit2D(Collider2D other);

3.2.2.3 The power-up objects. Similarly to the traditional

Bomberman, there are many power-ups for the player to pick up in

the current project as well. All the power-up objects share a

common PowerUp script which is responsible to detect the

colliding player or bot and call the proper function on the detected

object’s script, according to the type of the power-up object. As

mentioned in the previous section, the power-ups implemented in

the current game are:

Extra bombs: At the beginning of each level, every

player/bot has only one usable bomb. The rest are

locked. By picking up this power-up, one more

bomb gets unlocked and usable.

Extra life: Every player/bot has three lives initially.

This power-up works either as a refill, if any life

has been lost by the time the power-up is picked up,

or as an extra life, making them four in total.

Fire range: The bomb’s initial level is one, which

forms a small cross with no extension parts when

detonating. This power-up increases bombs level

by one, adding/tiling extension parts per side.

Ghost bomb: Bombs do not penetrate destructible

objects by default. This power-up allows the player

to burn game objects hidden behind obstacles or

even destroy many obstacles at once.

Throw bomb: Blocking your own way out with a

bomb is the most common mistake in Bomberman.

With the specific power-up, bombs get suspended

when you are too close to them and you can pick

them up and throw them in any direction you wish.

Speed up: Every time this power-up is picked up,

player’s/bot’s speed gets increased by 0.06. This

power-up is permanent until the player or bot gets

hurt or the level is completed.

X-Ray Vision: This power-up reveals the hidden

power-ups’ position on a certain range around the

player/bot. However, it is a tricky power-up

because, in multi-player mode, other players can

also see the hidden power-ups around you.

Most of the power-ups’ implementation was quite straight-forward,

but there were also some exceptions. The most demanding ones

were the ‘Throw bomb’ and the ‘X-Ray Vision’. The former

needed an extra player animation for holding the bomb, a bomb

detector collider as a child for player object and a few functions to

traverse through the row/column which the player was facing

towards when throwing the bomb, to find empty landing tile. As for

the throw motion, it was created as a linear interpolation on the

horizontal/vertical axis, along with some curves, to create a bounce

effect.

On the other hand, the ‘X-Ray Vision’ was implemented with a

circle-shaped sprite mask, attached to the player object. An easy

way to fulfil our purpose was to make the destructible objects, -

under which power-up objects are hidden - ‘Visible outside of the

mask’. However, this was proven ineffective, as the player could

not see the obstacles around them inside the range of the sprite

mask and therefore kept walking towards dead-ends. That said, we

followed a different approach: we added on every power-up object

a copy of their sprite as a child object, sorted it on a higher

rendering layer and made it ‘Visible inside the mask’. As for the

sprite mask, it filters certain rendering layers’ range, which is

higher than the layer of other map objects but contains the power-

ups sprites layer.

3.2.2.4 The bot object. In this game, we have used two types of AI,

namely the bots and the monsters. The Bot is supposed to imitate a

person’s playing behaviour, so it always looks for the closest

opponent (either real players or other bots), as analysed in Figure

11. After finding its target, it uses an A* algorithm [5] to calculate

the best path to follow, including paths through destructible objects.

Then it moves towards every tile in the found path one by one until

it finds an obstacle. If the obstacle is a destructible object or another

player/bot, it drops a bomb. If the obstacle is a bomb or after it has

planted a bomb, it starts path-finding for a position a few tiles

backwards and on a turn. The found path towards the player is

temporarily replaced by the new path for the hiding spot. When it

reaches that spot, it freezes for a second to avoid the bomb’s

detonation. Then, it recalculates the path towards the player and

starts over.

Figure 9: Bot planting a bomb and hiding

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 8

Figure 10: Bots planting bombs to attack their enemies

Figure 11: The Bot AI logic

3.2.2.5 The monster object. The Monster is the second type of AI

used in this game. It appears only in the Adventure mode of the

game. At first, Monster AI worked similarly to the bots, except that

it could not plant bombs. It always had the player as a target, but

unless the player cleared a path, the Monster could not reach its

target. However, an ‘aggressive’ AI like that was a quite tough

opponent for our player, and in original Bomberman, the monsters

were not that smart. Moreover, the player loses a life by simply

colliding with the monster. As a result, we ended up separating our

monsters in two kinds: the ‘dummy’ and the ‘smart’ one.

The Monster AI object has three states: Idle, Roaming and Hunting.

The way the ‘dummy’ one operates is by checking for all four

directions around it if they are clear or blocked by wall, obstacle or

bomb, storing the clear directions in a list.

Figure 12: Top - Dummy AI, Bottom - Smart AI

Figure 13: The ‘Dummy’ AI logic

If there are no clear directions, it turns to Idle state. If there are clear

paths, it selects randomly one of the stored directions, turns to

Roaming state and starts moving towards it. As long as the chosen

direction is clear, it keeps moving towards it, otherwise, it repeats

the process from the beginning. Hunting state is not used by the

‘dummy’ AI at all.

The ‘smart’ one, on the other side, operates as the ‘dummy’ one on

roaming, until it spots – by being on the same row or column with

the player – and has a clear path towards the player (Figure 14). In

this case, it turns to the Hunting state and starts following the

player. If it reaches a bomb, it moves backwards and turns,

similarly to the bots.

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 9

Figure 14: The ‘Smart’ AI logic

3.2.3. Object generators. In every game, most of the dynamic

objects get spawned in runtime, but for performance issues, they

usually get pooled from the beginning and are activated/deactivated

when in need. In this game, three generators were created: one for

levels, one for the power-ups and one for monsters.

Each generator has some variables exposed making it easily

configurable. For instance, the power-up generator allows the

developer to adjust the type and the number of the power-up objects

appearing on the levels, having an exposed array where the

developer easily fills in the prefabs of the wanted power-up objects

and the times of their appearance. It also stores some generic

settings, like the cool down time of the power-ups that we might

want to be temporary. However, if these durations/cool-down times

are set to zero, the power-ups are transformed into permanent ones,

which means that they will be deactivated either when the level is

completed or the player is hurt.

The power-up generator is located on the ‘PowerUps’ game object

that also functions as the parent for all the power-up objects.

Regarding its functionality, every time a level starts the generator

scans current level’s tilemaps storing the positions of destructible

objects in a list.

Figure 15: Power-up generator configurations

If there are no children under the ‘PowerUps’ game object for every

power-up in the configured array and for every time of appearances

set for it, the generator has to spawn an object. To do that, it gets a

random index for the list with the positions of the destructible

objects, it instantiates a power-up of the given prefab on the

randomly chosen position and removes this position from the list.

Otherwise, if the power-up objects have already been generated –

for example when the current level is not the first one – the

generator just re-positions the power-ups randomly on the new

positions available.

The level spawner is responsible for generating a certain amount of

levels as set in the object’s settings, using the level prefabs given

by the developer. If prefabs are less than the number of levels set,

the spawner instantiates multiple instances of the given prefabs.

Figure 16: Level generator configurations

An idea that came up later on this project was having different

camera’s background colour per level, which is also handled by the

level generator. Every level map object has its configurations for

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 10

the camera’s background colour, its tilemaps and the seconds

passed before the map starts shrinking (Figure 17). The shrinking

arena is a feature for multi-player or party mode, where the current

map starts appearing an inner circle of indestructible objects every

x seconds (x are the seconds set in the configuration of each level),

forcing the players to face each other.

Figure 17: Level settings and shrunk map

Regarding the monster spawner, unspawned monsters are stored

under a hidden object on the root. Every time a level starts, the

appropriate monsters, as set on the spawner configuration, are

transferred under the ‘Monsters’ object and positioned randomly on

ground tiles of the current map. An addition for better user

experience is filtering the aforementioned random position to avoid

spawning monsters next to the player and consequently sacrifice

the player’s lives. Whenever a monster dies, it resets and is moved

back under the unspawned monsters object. In the spawner settings,

the dropdown for the monsters type - apart from the specific

monster types and the random one - contains also the options

‘dummy only’ and ‘smart only’, covering the possibility of the

existence of multiple monsters of each intelligence.

Figure 18: Monster generator configurations

3.2.4. User interface (UI). Game developers have a certain

way of communicating with gamers and is called ‘user interface’.

Any information that users need to know – for instance, the players’

lives – has to be displayed somewhere on the player’s screen.

Moreover, various screens are used to allow users to follow the

game flow, while others give them the ability to change the game

according to their preferences.

Figure 19: Start screen & Game Over screen

Therefore, in the current project, amongst the usual screens like

Start and Game Over (Figure 19), we have also Game Mode and

Character Selection screens. In single-player mode, the screens

used are the Start screen and the Mode Selection screen. According

to the chosen mode, screens are differentiated. In Adventure Mode,

the player will see the Next Level, the Game Over and the Win

screens. The first two do not need further explanations. The Win

screen appears when the current level has reached the Monsters per

Level array size, set on the Monsters Spawner, making sure that

every level has enemies.

Figure 20: Next Level screen & Win screen

In Party Mode, where the player has to survive against the bots, the

player is given the ability to modify their character’s gender, skin

and clothes, besides, the number of the bots to which they will play

against. It is worth mentioning that in the Character Selection

screen, one bot is pre-activated because the player cannot play

alone. Another screen - that appears both in Party and multi-player

mode - is the Winner screen, which displays the winner’s image as

it was configured in the Character Selection screen, along with the

winner’s number, for example, ‘Player B Wins’.

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 11

Figure 21: Character Selection screen – default and modified

Figure 22: Winner screen

In multi-player mode, the UI screens are similar to the Party Mode

screens, with a small alteration. The Character Selection screen,

instead of having a bot pre-activated, has all the connected players

visible, with arrows enabled to transform their characters. If the

connected players are fewer than four, then there are ‘Add Bot’

buttons visible to fill the empty positions (Figure 23). Furthermore,

in order to inform the other players that a player is ready, we hide

the selection arrows. Last but not least, each player’s lives are

visible at the top of the screen, together with the player’s number

and a thumbnail of their image (Figure 24), in every game mode.

Figure 23: Character Selection screen with 2 Players & 1 Bot

Figure 24: Main Game UI

3.2.5. Camera manager. Game specifications requested

different types of camera for our game modes, therefore a camera

manager was necessary. In Party mode and multi-player game, a

top-view camera showing the whole map was asked. Thus, in these

modes, the camera manager places the camera under the root game

object, turns it to orthographic and centres it on the map.

Figure 25: 2D camera for Party or multi-player mode

In the adventure mode though, the camera manager attaches the

camera on the player’s sprite object and turns it to perspective. In

the camera handler settings, two arrays of game objects are

included. One array has to be filled with all the object that in

adventure mode will be rotated by -30 degrees angle including the

player’s sprite so that they face towards the camera and create the

2.5D effect. The other array has to contain any children items of the

other array’s objects, that are needed to stay unrotated, such as the

Explosion object under each Bomb. Some objects, such as the

monsters’ sprite objects, were also added in the rotation list through

the script for the developer’s convenience.

Figure 26: 2.5D camera for Adventure mode

Figure 27: Camera manager configurations

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 12

3.2.6. Sound Effects and Music. Having completed the

previous steps, the game still misses some features for vividness,

such as background music and sound effects. For background

music, an intro sound is played once when the game starts and right

after it, a seamless audio clip is set to be played repeatedly.

Considering the sound effects used, a list of objects was created.

The objects that synchronised with sound effects are:

▪ bombs’ explosions, with an explosion sound

▪ power-ups picking up, with a jiggling sound

▪ the game over screen, with a mocking laughter

▪ the next level screen, with a short satisfactory audio clip.

3.2.7. Extra features requested on a second phase. It is not

uncommon during a project, for new ideas to come up adding a

special touch to the game. Even the simplest game, can become a

lot more interesting with small additions, that sometimes offer just

an aesthetic variation. For instance, screen-shake in a game is a

straightforward coding addition, that does not affect the gameplay

or the story, but creates an effect that catches the user’s eye. Thus,

in this project, screen-shake was implemented for bombs

explosions.

Furthermore, getting inspired by other games and creating a unique

mixed result, is also beneficial for every project. An idea that was

implemented and differentiated this project from the original

Bomberman game, was a shrinking functionality for the tilemaps

used as a level map. It was decided that in every mode except for

the adventure one, every few seconds, the arena had to shrink by

the addition of an inner wall of indestructible items. This way, the

players would be forced to face each other, instead of

procrastinating to 'explore' the arena.

3.3. Challenges

Programmers are expected to solve problems and deal with

challenges on a daily routine. In the current project, two issues

required more attention.

The first issue was that Unity’s physics were causing an annoying

bounce on the walls of the map, even when physics materials with

no bounciness were used on both the walls and the players.

Therefore, we followed a different approach. Instead of modifying

the player’s position gradually, we decided to use the function

Rigidbody.MovePosition 7 , that accepts the new position as a

parameter. By replacing the initial movement code (Figure 28) with

the one shown in Figure 29, we managed to make the players stop

immediately when facing a wall, thus avoiding the bounciness.

Another minor issue that needed to be resolved was the unsmooth

turns. When the player was not located perfectly in an intersection

tile, they could not turn. They got stuck on any obstacle on the

directions they were trying to turn to. From the very beginning, the

player objects’ collider was set to Circle collider 2D, to make their

movement more flexible, but that was not enough. At last, we

7 https://docs.unity3d.com/ScriptReference/Rigidbody.MovePosition.html

proceeded with setting the player’s rigidbody interpolation option

to Extrapolate8, resulting in smoother turns around corners.

Figure 28: Initial movement code

Figure 29: Final movement code

The most challenging task in this project was the various AI types

we needed, mostly because of their path-finding. Searching around

the grid repeatedly is not cheap, especially when the grid’s contents

keep changing, thus it should be limited to the minimum possible.

In the beginning, both the bots and the monsters were smart and

they were supposed to hunt down the players/bots. As mentioned

in Sections 3.2.2.4 and 3.2.2.5, it was decided to divide the

monsters into the ‘dummy’ and the ‘smart’, because it felt quite

tough for the gamer. In this section, we will mention the ways we

limited the use of path-finding.

The ‘dummy’ AI does not do any path-finding. It simply checks for

its surrounding four tiles (above, below, left and right), every time

it comes across an obstacle. The ‘smart’ one always checks if it is

positioned in the same row or column with the player. If it is not, it

omits the path-finding algorithm and behaves like the ‘dummy’

one. Otherwise, it performs one search to find a clear path towards

the player. If the search returns any paths, then it starts hunting,

doing path-finding every time the player moves. However, if no

paths are returned, it roams around like the ‘dummy one’, as

presented in Figure 14.

On the contrary, the bot has to always target the closest one

player/bot, as described in the previous sections. It is programmed

to recalculate the available paths every time the targeted player has

8 https://docs.unity3d.com/ScriptReference/RigidbodyInterpolation.Extrapolate.html

https://docs.unity3d.com/ScriptReference/Rigidbody.MovePosition.html
https://docs.unity3d.com/ScriptReference/RigidbodyInterpolation.Extrapolate.html

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 13

changed position. When it comes across an obstacle, it drops a

bomb and looks for a close place to hide that is approachable,

without having to clear the path. When it reaches the chosen place,

it needs to recalculate the best path towards the closest player and

starts hunting again. In order to make this procedure as cheap as

possible, when we load the current level, we create two arrays of

path nodes. The one stores all the tiles on the map and marks them

as approachable (ground tile) or breakable (destructible tile). The

other array holds only the clear approachable tiles. Every time a

bomb explodes, we update the proper values on these two arrays.

The path-finding algorithms used are two as well. The one, which

uses the first array, is used from the bots, to find the best path even

with breakable tiles in it. The second one uses the second array that

contains only the clear tiles when searching for clear paths towards

a position.

4. Results and Evaluation

When a project is finished, we need to confirm that what was

requested in the given specifications has been completed and is

functional. In the current game, after the implementation described

previously, there is now a Bomberman-type game, called

BombDudes, that has three modes, namely an adventure, a party

and the multi-player one. Furthermore, it has three heuristics AI

used in the aforementioned modes. The camera gets positioned

accordingly, based on the game mode selected, while the levels

have the wanted dimensions and are created as grids. As a result,

all the requirements have been covered.

From the technical point of view, in this project, we followed

specific guidelines to optimise its performance. More specifically

the techniques that were used are:

• object pooling for items that we could reuse, like power-ups,

monsters, players and bombs

• memory handling, by allocating as many variables we could

on the stack and avoid to overload the heap

• caching, by declaring any component-type objects and

initialise them on the Start or Awake methods, instead of

doing it repeatedly on the Update function, or by storing the

level’s layout, instead of searching for each tile wanted.

• coroutines’ use, for any function that needed to run in more

than a single frame, or when we needed some function to be

called after some time.

The screenshots below (Figure 30-Figure 37) were taken on a

laptop with 64-bit Windows 10, a 4-core CPU at 1.80GHz, 8GB

RAM and 2 GPUs with 8GB total GPU memory. An example of

the usual condition of the current laptop, when having the Unity

active, but not running the game, can be found in Figure 30.

Figure 30: Laptop's condition before running the game

The statistics in Figures Figure 31-Figure 37 were taken when the

game was running, but they cannot be indicative exclusively for the

‘BombDudes’ game, because this game was created as a part of a

larger industrial project, that is also loaded on the background,

while this game is running.

Figure 31: Statistics on Adventure mode

At a glance, we notice that there are trivial variations between the

laptop’s condition. It is reasonable to consume more CPU,

considering the processes running. By filtering the resources used

only for the Unity Editor, the numbers seem to be balanced. In

general, comparing the framerates on the screenshots, the

alterations are very small and insignificant. In particular, the

absence of sudden peaks or drops means that there are no unusual

renderings. The following snippets (Figures Figure 35, Figure 36,

Figure 37) were taken while playing in multi-player mode, and

performance seems to be balanced, regardless of the players’ and

bots’ number.

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 14

Figure 32: Windows Resource Manager filtered on Unity

Editor

Figure 33: Statistics from Party mode with 1 bot (left) and 2

bots (right)

Figure 34: Statistics on Party mode with 3 bots

Figure 35: Statistics on multi-player with 2 players

Figure 36: Statistics on multi-player with 2 players & 1 bot

Figure 37: Statistics on multi-player with 2 players & 2 bots

Figure 38 is derived from the Unity Profiler, while the game was

running in adventure mode. The average response time and

framerate are justified by the fact that other processes are running

in the background.

Recreating Bomberman - Features, steps and challenges Dissertation, Newcastle University, 2020

Sofia Papadopoulou 15

5. Conclusions

Given the limited research on game development methodology, we

felt the need to demonstrate an indicative way of building a

Bomberman-type game, presenting the developer’s perspective and

implementation process. We described the trail of actions from the

beginning until the final complete game and we made an effort to

justify any decision made. By reading Section 3, it becomes

obvious that developers have to think in advance about possible

future requests or ways to extend functionality. It is also important

to write configurable code, that does not need script re-writing

often, but can be modified from the Unity Editor’s environment.

In general, this project allowed us to take initiatives, become more

independent and discover better implementation techniques. As it

is said ‘Practice makes perfect’ and in the gaming industry,

everyday developers face new challenges. By being able to foresee

features that may be requested and adjusting our scripts, we can

save a great amount of refactoring time. To sum up, the final result

is a fully developed game that will be included in a game that will

be published in the near future.

Regarding possible future work, considering that this game was

based on Super Bomberman built for Super Nintendo (known as

SNES), the creation of various enemy types for the adventure mode

with distinctive abilities would be interesting. For instance, in the

original game, there are:

- ‘bomb enemies’ that roam around and explode every seven

seconds,

- ‘bomb-eater enemies’ that look like an eating-bomb Pacman

- ‘floating enemies’ that can pass over breakable objects

- ‘camouflage enemies’ that partially disappear every few seconds

- ‘coin enemies’ that look like moving coins and reward the player

with double points when they are killed.

Possible additions could also be ‘boss levels’, a progress map to

offer a visual illustration of the player’s level and more power-ups.

The only limit is the developer’s ideas and time.

REFERENCES

[1] Rogers Scott. 2014. Level Up! The guide to great video game design.

John Wiley & Sons.

[2] de Lope Rafael Prieto, et al. 2015. Design Methodology for Educational

Games based on Interactive Screenplays. CoSECivi 1394, pp.: 90-101.

[3] Milam David. 2013. Game Design Framework and Guidelines Based

on a Theory of Visual Attention.

[4] Groot Kormelink Joseph, Drugan Madalina & Wiering Marco. 2018.

Comparison of Exploration Methods for Connectionist Reinforcement

Learning in the game Bomberman.

DOI:https://doi.org/10.5220/0006556403550362.

[5] Mikael Fridenfalk. 2014. The design and implementation of a generic

A∗ algorithm for search in multidimensional space. 2014 IEEE Games

Media Entertainment, Toronto, ON, pp. 1-2.

DOI:https://doi.org/10.1109/GEM.2014.7048081.

[6] da Cruz Lopes, Manuel António. 2016. Bomberman as an artificial

intelligence platform.

[7] Resnick Cinjon, et al. 2018. Pommerman: A Multi-Agent Playground.

arXiv preprint arXiv:1809.07124.

[8] Segal, Omri Ben Dov Meirav, and Gal Katzhendler Varda Zilberman.

Pommerman Agent.

Figure 38: Profiler window when game is running

